
An Automated Performance Evaluation Framework
for the GINKGO Software Ecosystem

Hartwig Anzt∗†, Yen-Chen Chen‡, Terry Cojean∗, Goran Flegar§, Enrique S. Quintana-Ortı́§, Yuhsiang M. Tsai‡
∗Steinbuch Centre for Computing, Karlsruhe Institute of Technology, Germany
†Innovative Computing Lab (ICL), University of Tennessee, Knoxville, USA

‡Institute of Applied Mathematical Sciences, National Taiwan University, Taipei, Taiwan
§Departamento de Ingenierı́a y Ciencia de Computadores, Universidad Jaume I Castellón, Spain

hartwig.anzt@kit.edu, yanjen224@gmail.com, terry.cojean@kit.edu, flegar@uji.es, quintana@uji.es, yhmtsai@gmail.com

Abstract—We present a framework that automates the process
of testing and monitoring the performance of software libraries.
Integrating this component into an ecosystem enables sustainable
software development as a community effort via a web applica-
tion for interactively evaluating the performance of individual
software components. The performance evaluation tool is based
exclusively on web technologies, which removes the burden of
downloading performance data or installing additional software.
The framework is currently integrated into the GINKGO sparse
linear operator library, but allows for easy extension to cover
other software projects. This enables the painless comparison of
different high performance computing libraries.

Index Terms—interactive performance visualization, auto-
mated performance benchmarking, continuous integration,
healthy software lifecycle

I. INTRODUCTION

Over the years, high performance computing (HPC) systems
changed dramatically, and gradually became more complex.
Current supercomputers typically consist of multiple layers
of parallelism, heterogeneous compute nodes, and a complex
cache hierarchy within every single processing unit. To effec-
tively use these systems, high performance libraries have to
reflect the complexity and heterogeneity of the architectures
not only by providing back-ends for various hardware compo-
nents, but also by integrating different programming models
and algorithms that are suitable for the distinct hardware char-
acteristics. In addition, the rapidly changing HPC landscape
requires the software libraries to be amenable to modification
and extension. These challenges increase the burden on the
software developers. The growing size of developer teams can
result in integration conflicts and increased complexity of the
software stack.

To increase productivity and software quality, tools for
integration, testing, and code reviewing are constantly being
improved. While the use of such tools has become the de-facto
standard in industry, they are barely adopted by academic com-
munity. The primary reason is that academic software projects
often arise as the by-product of a self-contained and limited
research effort. At the same time, the lifespan of academic
software regularly exceeds the duration of the specific research

The authors would like to thank the BSSw and the xSDK community
efforts, in particular Mike Heroux and Lois Curfman McInnes, for promoting
guidelines for a healthy software life cycle.

project, as the software gets extended beyond the original
purpose. These extensions, however, are often workarounds to
add functionality, or utilize existing software components that
are not necessarily optimized for runtime performance. Hence,
integrating gradually-extended software libraries into complex
application codes can introduce performance bottlenecks that
are difficult to track down. Therefore, it is important to provide
the users of a library with easy access to performance analysis
of the distinct software components.

In this work we design and deploy an interactive perfor-
mance evaluation tool that propagates performance results
via a web application. The data is automatically collected
on HPC systems and archived in a remote repository — a
strategy that allows to revisit “old” data. The performance
evaluation framework builds upon open-source projects, and
allows fine-grained analysis of performance data with respect
to parameters and performance metrics customized by the user.
The main contributions of the paper are:

• The design of a software development cycle featuring
automatic performance evaluation on HPC systems and
remote performance data archiving.

• The design and deployment of an automated performance
evaluation tool that automatically retrieves performance
data from a remote repository and allows to customize
the analysis to the user requests.

• The design and deployment of a web application that
builds on web technology only, efficiently realizing the
performance analysis as web service and removing the
burden of downloading performance data to local disk or
installing additional software.

The framework is integrated into the GINKGO open-source
software ecosystem, but allows easy adoption by other soft-
ware projects that employ a healthy software development
cycle, similar to the one we present in Section II. The design of
the automated performance evaluation framework and details
about its deployment are given in Section III. In Section IV
we describe the components of the web application that allows
to interactively analyze performance data, while in Section V
we instruct how to use the analysis tool and customize the
presentation of benchmark result. In Section VII we provide
details on how other software libraries can easily adopt the

CI	Test

Performance	Data	Repository

Continuous	Integration	(CI)

Developer
Code	Review

CI	BuildSource	Code
Repository

Push

Schedule	 in	
Batch	System

Web-Application

HPC	System

Trusted	Reviewer

Users

Merge	into
Master	Branch

CI	Benchmark	Tests

Fig. 1. The software development ecosystem of the GINKGO library.

performance evaluation framework. This step would enable
the quick comparison of the performance of distinct software
libraries. We conclude in Section VIII by providing ideas on
how this framework can serve as a global software perfor-
mance database for high performance software packages.

II. SOFTWARE DEVELOPMENT ECOSYSTEM

In the past, software development was often a one-man-
show or included only a small team of programmers. Nowa-
days, the increased hardware complexity and the demand for
versatile software features requires software products to be
developed as a team effort. The collaborative development of
software is a challenge that requires the consideration of as-
pects such as sustainability, productivity, code readability and
functionality, correctness, integration, and the synchronization
of the distinct development efforts. Therefore, a healthy soft-
ware life cycle employs an ecosystem where different tools
used by developers are complemented with automatic features,
all of them helping the development team to produce high
quality software. Such ecosystems include code formatting
tools, software versioning systems, automated compatibility
and correctness checks, and community interaction tools.
The Better Scientific Software initiative (BSSw [9]) aims to
propagate measures and strategies to the scientific community
that facilitate such a healthy software lifecycle. With a focus
on high performance computing, resources like workshops,
blogs, tutorials, and online learning materials are offered
with the goal of improving the quality of scientific software,
and simplifying its integration and interoperability. Software
interoperability is also the main target of the xSDK [13]
effort that aims to bundle existing software libraries into a
coherent software stack. Its ultimate goal is to enable easy
cross-compilation of different libraries, and to facilitate the

combination of features taken from distinct software packages.
For this purpose, the xSDK community has agreed on a set
of policies that have to be adhered by all software packages
part of the effort [13]. These policies, along with the sustain-
ability measures propagated in the BSSw initiative, serve as
guidelines for the development cycle that we employ for the
GINKGO linear operator library. We provide an overview about
GINKGO’s software development cycle in Figure 1.

We note that GINKGO is distributed as open-source software
under the BSD 3-clause license, and that the complete software
development ecosystem builds upon open source tools. The
library itself has no external dependencies, and the extra
components used for testing and benchmarking are licensed
under either the MIT or BSD 3-clause license. However, these
additional components can be manually deactivated, without
removing any of the library’s core functionalities.

GINKGO’s source code is version-controlled using git. Git
has established itself as the de-facto standard version control
system for tracking changes in computer files and coordinating
work on those files among multiple developers [3]. As a
distributed revision control system, it particularly focuses
on data integrity and speed. While git does support decen-
tralized management of collaborative software efforts, most
modern workflows, like Gitflow1 used by GINKGO, assume
a central repository available at all times. These workflows
are supported by web services which provide hosting of git
repositories. Among the most popular ones are GitHub [4],
GitLab [5] and Bitbucket [1]. All of them offer hosting of
open-source projects free of charge. These services also in-
tegrate community features facilitating collaborative develop-
ment, such as pull/merge requests incorporating code review,

1 https://www.atlassian.com/git/tutorials/comparing-workflows/
gitflow-workflow

https://www.atlassian.com/git/tutorials/comparing-workflows/gitflow-workflow
https://www.atlassian.com/git/tutorials/comparing-workflows/gitflow-workflow

issue and bug tracking, wiki pages and project website hosting.
The GINKGO project uses both GitHub and GitLab to host
its repositories. A public repository available to the wider
community is hosted on GitHub2, while a private version used
for ongoing, unpublished research is hosted on GitLab. In
both cases, GINKGO relies heavily on the above mentioned
community features to organize the development effort.

Recent software development trends pursue the automation
of an increased number of housekeeping tasks associated
with software development, and bundle them in Continu-
ous Integration (CI) systems [16]. They provide non-trivial
computational capabilities to the otherwise static repository
hosting, and can either be integrated in the hosting service
(e.g., GitLab CI/CD), or realized as a separate service that
communicates with repository hosting (e.g., Jenkins, Travis
CI, AppVeyor). Usually, CIs are used to verify the integrity
of the software after each change in the source code by
compiling the software on a set of supported architectures and
using different configurations. CIs can also be employed for
testing the software’s functionality using the utilities bundled
with the source repository. At the same time, CI systems
can also be used for other functionalities. GINKGO employs
the GitLab CI/CD service for building the library, to run its
unit tests, to synchronize between the public and the private
repository, and to automatically generate and publish the user
documentation. In this work we extend the CI pipelines to
automatically run GINKGO’s benchmark suite on predefined
HPC systems and publish the collected results in a publicly
available performance data repository, see Figure 1.

Software developers that want to add their components to
the GINKGO software stack can create a fork of the public
repository on GitHub, and submit a pull request with their
changes. The CI system then selects a variety of compil-
er/hardware configurations, and tries to compile the source
code in these environments, using GINKGO’s CMake-based
build system [17]. This automated workflow ensures a conflict-
free compilation across a variety of supported platforms. All
functionalities in GINKGO are covered by unit tests. Unit
tests check the correctness of the smallest software entities
and allow to quickly track down software bugs [18]. If the
CI system succeeds in compiling on a specific hardware/-
compiler configuration, the unit tests are invoked to check
correctness. Writing the unit tests is facilitated via the Google
Test framework [11]. Once all tests have passed, a member
of the GINKGO core development team performs a manual
code review. The reviewer ensures that all code is correct,
follows GINKGO’s code style guide, is well documented using
Doxygen [19], adds useful functionality, and fits the scope
of the software effort. In addition to reviewer’s comments, a
significant portion of GINKGO’s code style is enforced by the
clang-format [2] tool, which is integrated into GINKGO’s build
system.

The reviewer also has an important role as a gatekeeper:
after the code is merged into the GINKGO software stack,

2https://github.com/ginkgo-project

benchmark tests on an HPC cluster are invoked to evaluate
the code’s performance. Running externally-contributed code
on an HPC system poses a high security risk, and the reviewer
approving the merge request has to carefully check the code
for malware. Therefore, the trusted reviewer is someone with
access privileges to the HPC system, and by approving the
merge, he takes the responsibility for the code’s integrity.
Once approved, the continuous integration system inserts the
benchmark tests into the cluster’s scheduling system, and
(once the tests have completed), collects the performance
results. Those are archived in a distinct git repository that
is designed as a comprehensive collection of performance
characteristics. Archiving the performance results allows to
monitor the performance of individual functionalities over the
software’s lifetime and the detection of possible performance
degradations.

The interactive performance evaluation is facilitated via
a web application accessing this performance database. We
provide details about the performance evaluation process in
Section III, present the web-based performance analysis tool in
Section IV, and explain how to use the interactive performance
analysis by adapting the inquiries to the specific demands in
Section V.

III. PERFORMANCE EVALUATION

The performance evaluation on a specific HPC system is
automated via a series of jobs defined in GINKGO’s CI system
configuration file (.gitlab-ci.yml by default). These per-
formance benchmark jobs are defined as “scheduled”, which
means they are not invoked automatically at every repository
update, but can be set to execute at fixed intervals via GitLab’s
web interface.3

Once the benchmark runs are invoked, the CI server es-
tablishes an SSH connection to the target HPC system. The
GINKGO repository is cloned to the server, and the library is
compiled using its build system. Next, a set of benchmark
tests is submitted to the HPC system’s job scheduler. The
exact sequence of commands to facilitate this depends on the
scheduler employed by the system, and is fully configurable
in the CI configuration file. Finally, once all benchmarks are
completed, the CI job collects the results and uploads them
into the performance data repository.

There exist different strategies to detect the completion of
the performance tests. The strategy we currently use keeps
the SSH connection to the HPC system for the duration of
the benchmark execution. This is an adequate solution if
the network is guaranteed to be stable, e.g. if the CI server
and the HPC system are located in the same local network.
When connecting to a remote system, the assumption of a
stable network connection may not be realistic. An alternative
strategy closes the connection to the HPC system as soon as
the benchmarks are submitted to the server’s job scheduling
system, and a separate job is used to collect the benchmark
results and upload them into the performance data repository.

3 https://docs.gitlab.com/ee/user/project/pipelines/schedules.html

https://github.com/ginkgo-project
https://docs.gitlab.com/ee/user/project/pipelines/schedules.html

This job can be triggered from the script running on the HPC
cluster via a GitLab trigger4, by sending a POST message to
the GitLab web API. In case the HPC system does not allow
web access, the job can be configured to check the completion
status at regular intervals.

The output format in which the performance data is stored
has to allow for easy interaction between the benchmark
runners, the web application, and third-party applications. To
that end, the data exchange format should be chosen carefully
with respect to support for low-level programming languages
as well as scripting languages used for web development. In
our ecosystem, we choose the JSON [14] data format as it
has become the de-facto standard for web applications and
has native support in most higher-level languages (Python,
MATLAB, Javascript). Furthermore, libraries providing JSON
interfaces are available for low-level programming languages
such as C and C++. In GINKGO, we employ RapidJSON [20]
to generate JSON files in the benchmark suite.

IV. PERFORMANCE VISUALIZATION

While the previous steps of the performance benchmarking
workflow were assembled by using existing open-source com-
ponents, we were unable to identify a suitable tool to enable
rapid performance visualization. Such a tool has to quickly
provide library developers with insight about the behavior of
their algorithms. In addition, it should offer useful information
about the library’s performance to existing and prospective
users. Ideally, the users do not have to install any additional
software nor manually download performance results.

To fulfill these requirements, we developed the “GINKGO
performance explorer”5 (GPE). This web application automat-
ically retrieves the data from the performance data repository,
and visualizes it in a web browser. This implies that a web
browser alone is sufficient to access and analyze the perfor-
mance results: the web-based performance analysis framework
does not require the installation of additional software or
downloading performance data. GPE works on all major
operating systems (Linux, Mac and Windows) and we tested
the correct functionality using current versions of the Firefox,
Chrome, and Safari browsers.

We employed the Angular framework [8] to implement
the application logic as well as the interaction in-between
the distinct components and the communication with the rest
of the web (e.g., to download performance data). We used
Angular’s Material user interface (UI) components for the
application’s layout and form controls. We also provide a
component that visualizes the data retrieved from the JSON
performance files, using the Chart.js plotting library [10].

Library developers likely need the flexibility to customize
performance graphs to focus on a specific aspect. To enable
this flexibility we decided to embed a powerful domain-
specific scripting language which can be used to extract
subsets of the raw data and to transform them into a format

4 https://docs.gitlab.com/ee/ci/triggers/
5 https://ginkgo-project.github.io/gpe

that can be used as input for the visualization. JSONata
[6] is a scripting language designed for acting on JSON
data. A JSONata open-source compiler in the form of a web
component is also available. We adopted both, the JSON
scripting language along with the compiler in GPE to provide
the required scripting capabilities. For convenience, GPE also
features the open-source Monaco editor web component [12],
which allows to develop JSONata scripts directly inside the
web interface. Interconnecting it with the JSONata compiler
enables “as-you-type” syntax checking, result transformation,
and plotting.

While providing additional convenience, a downside of
“as-you-type” is a noticeable performance degradation when
working with large datasets, as the compilation and execution
of the script is currently handled by the thread in charge of the
UI and the visualization process. A temporary workaround is
to deliberately introduce a syntax error when writing the script.
This will cause the low-cost compilation process to terminate,
and the costly dataset transformation will not be invoked. Once
the script is finished, the syntax error should be removed, and
the whole compilation and the JSON transformation process
will take place. Additionally, the tool currently requires an ac-
tive web connection to obtain the datasets from the repository.
However, once the datasets are retrieved, the connection is
no longer required. Both problems described can be solved
via Service Workers6. They are implemented as separate
processes from the UI thread, and can be used to offload
computation, which solves performance degradation problems.
Service Workers can also intercept network requests, and serve
a cached version of the data as response to data requests,
which allows the use of GINKGO without web access. We are
currently adopting Service Workers in the GPE framework.

By combining the features described in this section, GPE
provides the flexibility of tools like MATLAB or Python,
while efficiently decreasing the effort for library users and
developers:

1) No additional software has to be installed;
2) No performance data has to be downloaded to local disk;
3) The raw performance data is automatically retrieved

from the repository;
4) Using a language specifically designed to transform

JSON files, the data extraction scripts are simpler than
their MATLAB / Python counterparts; and

5) The visualization of the converted data is automated in
the web application.

V. OVERVIEW OF “GINKGO PERFORMANCE EXPLORER”

This section provides a step-by-step user tutorial of GPE.
Hands-on experience is enabled by accessing GPE on
GINKGO’s GitHub pages.7 For those interested in extending
the capabilities of the web application, the source code is also
available on GitHub8 under the MIT license.

6 https://developer.mozilla.org/en-US/docs/Web/API/Service Worker API
7 https://ginkgo-project.github.io/gpe/
8 https://github.com/ginkgo-project/gpe

https://ginkgo-project.github.io/gpe/
https://ginkgo-project.github.io/gpe/
https://docs.gitlab.com/ee/ci/triggers/
https://ginkgo-project.github.io/gpe
https://ginkgo-project.github.io/gpe/
https://ginkgo-project.github.io/gpe/
https://ginkgo-project.github.io/gpe/
https://ginkgo-project.github.io/gpe/
https://ginkgo-project.github.io/gpe/
https://ginkgo-project.github.io/gpe/
https://developer.mozilla.org/en-US/docs/Web/API/Service_Worker_API
https://ginkgo-project.github.io/gpe/
https://github.com/ginkgo-project/gpe

Fig. 2. GINKGO Performance Explorer layout. Red box: dataset selection dialog; Green box: transformation script editor; Blue box: data and plot viewer.

Fig. 3. The performance result selection pop-up dialog.

The web application is divided into three components,
as shown in Figure 2. On the top left (and marked in red)
is the data selection dialog. The dialog is used to retrieve
the raw performance data from the performance repository.
Clicking on the “Select result files” control opens a multiple
select pop–up dialog listing available performance data. By

[{
"name": "A",
"file": "path/to/A.json"

}, {
"name": "B",
"file": "path/to/B.json"

}]

Fig. 4. Example list.json file.

default, the application uses GINKGO’s performance data
repository9 to populate the list of available performance
result files. However, an alternative performance database
location (e.g. containing performance data for a different
library) can be provided via the “Performance root URL”.
The value of this control can be changed, and after clicking
the download button on the right of the control, GPE will try
to read the list.json file from the provided URL. This
file lists the names and locations of the performance results.
For example, if a database contains two data files located
at “http://example.com/data/path/to/A.json”

9 github.com/ginkgo-project/ginkgo-data

https://ginkgo-project.github.io/gpe/
github.com/ginkgo-project/ginkgo-data

Fig. 5. Raw performance results viewer.

content.{
"sparsity": problem.(nonzeros / rows),
"performance": 2 * problem.nonzeros /

spmv.csr.time
}

Fig. 6. JSONata script that computes the performance of the CSR SpMV
kernel and the nonzero-per-row average.

and “http://example.com/data/path/to/B.json,”
then a “list.json” file with content as
shown in Figure 4 has to be available at
“http://example.com/data/list.json”.
Afterwards, the “Performance root URL” in GPE is changed
to http://example.com/data, and the application
will retrieve the data from the chosen location. Once the
performance results are loaded, they can be viewed in the
“Results” tab of the data and plot viewer (the blue box on
the right-hand side in Figure 2). An example of raw data
that is retrieved by GPE is shown in Figure 5. All accessed
result files are combined into one single JSON array of
objects. Each object consist of properties such as the name
and relative path to the result file, as well as its content.

Collecting useful insights from raw performance data is
usually difficult, and distinct values need to be combined or

Fig. 7. Transformed data viewer.

aggregated before drawing conclusions. This is enabled by
providing a script in the transformation script editor, marked
with a green box on the left bottom in Figure 2. For example,
the data in Figure 5 shows raw performance data of various
sparse matrix-vector multiplication kernels (SpMV) on a set
of matrices from the SuiteSparse matrix collection. It may be
interesting to analyze how the performance of the CSR-based
SpMV kernel depends on the average number of nonzeros
per row. Neither of these quantities is available in the raw
performance data. However, by following the tree of proper-
ties “content > problem > nonzeros”, “content
> problem > rows” and “content > spmv > csr
> time”, the total number of nonzeros in a matrix, the
number of rows in a matrix, and the runtime of the CSR SpMV
kernel can be derived. Since these are the only quantities
needed to generate the comparison of interest, the transfor-
mation script editor can be used to write a suitable JSONata
script10; see Figure 6. The script is in real-time applied to
the input data, and the result is immediately available in the
“Transformed” tab of the data and plot viewer, as shown on
Figure 7.

The missing step is the visualization of the performance
data. For that purpose, the data has to be transformed into
a format that is readable for Chart.js, i.e. it has to be a

10Full JSONata user guide describing the syntax in detail is available at
https://docs.jsonata.org

https://ginkgo-project.github.io/gpe/
https://ginkgo-project.github.io/gpe/
https://docs.jsonata.org

($transformed := content.{
"sparsity": problem.(nonzeros / rows),
"performance": 2*problem.nonzeros /

spmv.csr.time
}; {
"type": "scatter",
"data" : {
"datasets": [{

"label": "CSR",
"data": $transformed.{

"x": sparsity,
"y": performance

},
"backgroundColor": "hsl(38,93%,54%)"

}]
}

})

Fig. 8. JSONata example script that plots the performance of the CSR SpMV
kernel in relation to the nonzero-per-row average.

Fig. 9. Plot generated by the example script given in Figure 8.

Chart.js configuration object (as described in the Chart.js
documentation11). Figure 8 provides a minimal extension of
the script to generate a Chart.js configuration object. The
visualized data is then available in the “Plot” tab of the data
and plot viewer; see Figure 9.

For first-time users, or to get a quick glance of the library’s
performance, we provide a set of predefined JSONata scripts
which can be used to obtain some performance visualizations
without learning the language. These can be accessed from
the “Select an example” dropdown menu of the transformation
script editor. By default, the example scripts are retrieved from
the GINKGO performance data repository. However, the script
location can be modified in the same way like the dataset
location.

VI. EXAMPLES

To conclude the presentation of GPE, we demonstrate its
ability in analyzing performance data. The goal is not to
analyze every aspect of the data in detail, but to show several
(more complex) visualizations of a dataset, and the workflow
to generate them. To that end, we look at the performance

11 https://www.chartjs.org/docs/latest/getting-started/usage.html

of GINKGO’s SpMV kernels on the entire Suite Sparse ma-
trix collection [7]. Even though the whole dataset contains
results for various architectures, we exclusively focus on the
performance of GINKGO’s CUDA executor on a K20Xm GPU.
Thus, as a first step, the results are filtered to include only this
architecture:
$data := content[dataset.(
system = "K20Xm" and executor = "cuda")]

In the following visualization examples we particularly
focus on how to realize the data transformations needed to
extract interesting data. The specific visualization configura-
tions to generate appealing plots (including the labeling of the
axes, the color selection, etc.), are well-documented and easy
to integrate [10]. The full JSONata scripts used to generate the
graphs in this section are available as templates in the example
script selector of GPE.

A. Fastest matrix format

In a first example, we identify the “best” SpMV kernel by
inspecting the number of problems for which that particular
kernel is the fastest. To that end, we first extract the list
of available kernels. Then, we split the list of matrices into
sublists, where every sublist contains the matrices for which
one of the kernels is the fastest. From this information,
the numbers can be accumulated and arranged in a Chart.js
configuration object. The JSONata script and the resulting plot
are given in Figure 10.

B. A more detailed analysis

The results in Figure 10 provide a summery, but no details
about the generality of the kernels. Each kernel “wins” for
a portion of matrices, but it is impossible to say which
kernel to choose for a specific matrix. Since the SpMV kernel
performance usually depends on the number of nonzeros in
the matrix, we next visualize the performance of the distinct
SpMV kernels depending on the nonzero count. From the
technical point of view, different SpMV kernels have to be
identified in the set, and the relevant data has to be extracted
from the dataset as shown on the left side in Figure 11. To
distinguish the performance of the distinct SpMV kernels data
in the scatter plot, we encode the kernels using different colors.
This is realized via a script that defines a helper $getColor
function which selects a set of color codes that are equally-
distant in the color wheel.

Figure 11 reveals more details about the performance of the
distinct SpMV kernels. Inside the GPE application, the points
representing distinct kernels can be activated and deactivated
by clicking on the appropriate label in the legend. We note that
this plot contains about 15,000 individual data points (> 3, 000
test matrices, 5 SpMV kernels), which makes the interactive
analysis very resource-demanding.

C. Comparison of CSR and COO formats

From comparing the performance of the CSR and the
COO kernel in Figure 11, we conclude that the CSR format
achieves better peak performance than COO. However, the

https://ginkgo-project.github.io/gpe/
https://www.chartjs.org/docs/latest/getting-started/usage.html
https://ginkgo-project.github.io/gpe/
https://ginkgo-project.github.io/gpe/

$formats := $data.spmv˜>$keys();
$counts := $formats˜>$map(function ($v) {
$data.optimal[spmv = $v]˜>$count()

});
{
"type": "bar",
"data": {
"labels": $formats,
"datasets": [{ "data": $counts }]

},
"options": { "scales": { "yAxes": [{
"ticks": { "beginAtZero": true }

}]}}
}

Fig. 10. Left: JSONata script for creating a bar plot visualizing the number of problems for which an SpMV kernel is the fastest. Right: The graph generated
by the script (after adding some visualization options).

$getColor := function($n, $id) {
"hsl(" & $floor(360 * $id / $n)

& ",40%,55%)"
};

$formats := $data.spmv˜>$keys();
$plot_data := $formats˜>$map(function($v, $i) {{
"label": $v,
"data": $data.{

"x": problem.nonzeros,
"y": 2 * problem.nonzeros /

(spmv˜>$lookup($v)).time
},
"backgroundColor":

$formats˜>$count()˜>$getColor($i)
}});

{
"type": "scatter",
"data": { "datasets": $plot_data },
"options": { "scales": { "xAxes": [{
"type": "logarithmic"

}]}}
}

Fig. 11. Left: JSONata script crating a performance vs. nonzeros graph for different SpMV kernels. Right: The graph generated by the script (after adding
visualization options).

$plot_data := $data[problem.nonzeros > 100000].{
"x": problem.row_distribution.(

$sqrt(variance) / median),
"y": spmv.(csr.time / coo.time)

};
{
"type": "scatter",
"data": { "datasets": [{

"label": "COO is faster",
"data": $plot_data[y >= 1],
"backgroundColor": "hsl(0,40%,55%)"

}, {
"label": "CSR is faster",
"data": $plot_data[y < 1],
"backgroundColor": "hsl(120,40%,55%)"

}]},
"options": { "scales": {

"xAxes": [{ "type": "logarithmic" }],
"yAxes": [{ "type": "logarithmic" }]

}}
}

Fig. 12. Left: JSONata script for a visualizing the speedup of the COO kernel over the CSR kernel. Right: The graph generated by the script (after adding
visualization options).

Fig. 13. A list of GINKGO’s protected variables.

COO performance seems more consistent as (for large enough
matrices), it never drops below 5 GFLOP/s. This suggest
that there exist matrices for which the CSR kernel is not
suitable. We may assume that load balancing plays a role,
and the regularity of matrices having a strong impact on
the performance of the CSR kernel. Indeed, the CSR kernel
distributes the matrix rows to the distinct threads, which can
result in significant load imbalance for irregular matrices. The
COO kernel efficiently adapts to irregular sparsity patterns by
balancing the nonzeros among the threads [15].

To analyze this aspect, we create a scatter plot that relates
the speedup of COO over CSR to the “sparsity imbalance of
the matrices.” We derive this metric as the ratio between the
standard deviation and the arithmetic mean of the nonzero-
per-row distribution. We expect to see a slowdown (speedup
smaller than one) for problems with low irregularity, and a
speedup (larger than one) for problems with higher irregularity.
The previous analysis in Figure 11 included problems that are
too small to generate useful performance data. In response, we
restrict the analysis to problems containing at least 100, 000
nonzeros. The script for realizing the performance comparison
and the resulting graph indicating the validity of the assump-
tion are given in Figure 12.

VII. USING THE FRAMEWORK IN OTHER PROJECTS

The entire workflow is designed to allow for the easy
adoption by other software projects. Since the majority of
components are open-source tools, the adoption of GPE
mostly consists of configuring these components. The setup
described here assumes that the project adopting the workflow
is hosted in a publicly available git repository (e.g., on GitHub,
GitLab or Bitbucket).

First, a public repository used to store the performance
database has to be created on a web-accessible server. The
only requirement is that the raw files stored in the repository
can be accessed over the http/https protocol, which is true
for all repository hosting services mentioned above. Then, a
new “CI/CD project for an external repository” has to be set
up on GitLab.12 This project will be used to run the automated
CI jobs. Most likely, projects want to set up a custom account
for the performance data repository that will be used by

12 https://docs.gitlab.com/ee/ci/ci cd for external repos

the CI system to publish new results. Then, GINKGO’s CI
configuration file13 should be copied into the project source
repository and customized to fit the project’s needs. This
includes changing the URLs to connected repositories (e.g., the
performance data repository), and the sequence of commands
used to build the project, to run the unit tests, to connect to the
HPC system, and to run the benchmarks. If some of the steps
are not needed, they can either be deleted or commented out.
For security reasons, the authentication details should not be
stored directly in the publicly available CI configuration file,
but as protected variables in the GitLab CI system. This way,
they are only available when running the jobs in a protected
branch, which can only be modified by trusted developers.
For example, Figure 13 shows a list of protected variables for
GINKGO. The first half is used by the CI system to authenticate
itself when adding performance results to the performance data
repository, and the second half is used to connect to our local
HPC system. Extending the list of variables allows to connect
to other HPC systems. The frequency of benchmark runs can
be configured on the GitLab CI/CD schedules menu.14 After
this setup is complete, GitLab will automatically mirror the
repository, run the configured build and unit tests at every
commit, and schedule the benchmarks on the HPC system at
regular intervals.

Interactive performance visualization via GPE can be en-
abled in two ways. The simplest approach is to just use the
version of GPE hosted on GINKGO’s GitHub pages, and
change the data and the plot URLs to appropriate values
for the project’s performance data repository, as explained
in Section V. However, if more customization and improved
user experience is needed, the GPE repository on GitHub
can be fork and a custom version of the application built
for the adopting project. The default database location can be
changed in src/app/default-form-values.ts. The
color scheme of the web application can be modified to
match the signature colors of the project by updating the
color definitions in src/ginkgo-theme.scss, and the
logo can be replaced with the project’s logo by providing
another src/assets/logo.png file. Once the customiza-
tion is completed, the application can be compiled using
the script scripts/build.sh. To complete this step,
angular-cli, node and npm have to be installed on the
system15. Finally, the application can be hosted on the GitHub
page of the fork by invoking the scr/deploy.sh script.

VIII. SUMMARY AND OUTLOOK

We have presented a framework for the automatic per-
formance evaluation of the GINKGO linear operator library.
The integrated GINKGO performance explorer (GPE) allows
to retrieve and interactively analyze data from a repository
containing performance results collected on HPC platforms.
Designing GPE as a web application removes the burden
of installing additional software or downloading performance

13 https://github.com/ginkgo-project/ginkgo/blob/develop/.gitlab-ci.yml
14 https://docs.gitlab.com/ce/user/project/pipelines/schedules.html
15Refer to https://angular.io/guide/quickstart for more details

https://ginkgo-project.github.io/gpe/
https://docs.gitlab.com/ee/ci/ci_cd_for_external_repos
https://ginkgo-project.github.io/gpe/
https://ginkgo-project.github.io/gpe/
https://ginkgo-project.github.io/gpe/
https://ginkgo-project.github.io/gpe/
https://ginkgo-project.github.io/gpe/
https://github.com/ginkgo-project/ginkgo/blob/develop/.gitlab-ci.yml
https://docs.gitlab.com/ce/user/project/pipelines/schedules.html
https://angular.io/guide/quickstart

results. The framework is amenable to extension to other soft-
ware efforts. Consequently, we hope other software libraries
will adopt the framework, and we envision the establishment
of a global performance database. Such a database will allow
the quick and painless performance comparison of distinct
libraries and software components.

ACKNOWLEDGEMENT

This work is supported by the Helmholtz Association Ini-
tiative and Network Fund under project grant VH-NG-1241,
and by the CICYT project TIN2017-82972-R of the MINECO
and FEDER.

REFERENCES

[1] Bitbucket https://bitbucket.org/.
[2] ClangFormat https://clang.llvm.org/docs/ClangFormat.html.
[3] Git https://git-scm.com/.
[4] GitHub https://github.com/.
[5] GitLab https://gitlab.com/.
[6] JSONata — JSON query and transformation language https://docs.

jsonata.org/.
[7] Suitesparse matrix collection. https://sparse.tamu.edu, 2018. [Online,

Accessed: 2018-08-12].

[8] Angular: One framework. mobile & desktop.,angular.io, accessed in
August 2018.

[9] Better Scientific Software (BSSw) https://bssw.io/, accessed in August
2018.

[10] Chart.js: Simple yet flexible javascript charting for designers & devel-
opers, chartjs.org, accessed in August 2018.

[11] Google Test https://github.com/google/googletest, accessed in August
2018.

[12] Monaco editor: A browser based code editor, https://microsoft.github.io/
monaco-editor, accessed in August 2018.

[13] xSDK: Extreme-scale Scientific Software Development Kit https://xsdk.
info/, accessed in August 2018.

[14] Ecma International. The JSON Data Interchange Syntax, 2 edition, 12
2017.

[15] Goran Flegar and Hartwig Anzt. Overcoming load imbalance for
irregular sparse matrices. In Proceedings of the Seventh Workshop
on Irregular Applications: Architectures and Algorithms, IA3’17, pages
2:1–2:8, New York, NY, USA, 2017. ACM.

[16] M. Fowler and M. Foemmel. Continuous integration, http://www.
martinfowler.com/articles/continuousIntegration.html, 2005.

[17] Kitware, Inc. CMake. http://cmake.org, 2012.
[18] Adam Kolawa and Dorota Huizinga. Automated Defect Prevention:

Best Practices in Software Management. Wiley-IEEE Computer Society
Press, 2007.

[19] Dimitri van Heesch. Doxygen: Source code documentation generator
tool, 2008.

[20] Milo Yip. RapidJSON: A fast JSON parser/generator for C++ with both
SAX/DOM style API, rapidjson.org, accessed in August 2018.

https://bitbucket.org/
https://clang.llvm.org/docs/ClangFormat.html
https://git-scm.com/
https://github.com/
https://gitlab.com/
https://docs.jsonata.org/
https://docs.jsonata.org/
https://sparse.tamu.edu
angular.io
https://bssw.io/
chartjs.org
https://github.com/google/googletest
https://microsoft.github.io/monaco-editor
https://microsoft.github.io/monaco-editor
https://xsdk.info/
https://xsdk.info/
http://www.martinfowler.com/articles/continuousIntegration.html
http://www.martinfowler.com/articles/continuousIntegration.html
http://cmake.org
rapidjson.org

	Introduction
	Software Development Ecosystem
	Performance Evaluation
	Performance Visualization
	Overview of ``Ginkgo Performance Explorer''
	Examples
	Fastest matrix format
	A more detailed analysis
	Comparison of CSR and COO formats

	Using the framework in other projects
	Summary and Outlook
	References

